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Abstract

The disturbed Hamiltonian equations of a solid filled with a rotating ellipsoidal mass of a liquid and subjected to small-

applied moments are revisited using Deprit’s variables. We investigate the chaotic dynamics of the orbiting liquid-filled

solid and of the liquid-filled solid sliding and rolling on a perfectly smooth plane, in either energy-conservative or energy-

dissipative conditions, when appropriately perturbed. Criteria for the judgment of potential chaotic rotations of the

perturbed system are formulated by means of Melnikov–Holmes–Marsden (MHM) integrals. Strategies for the solution of

heteroclinic orbits of the symmetrical liquid-filled solid under torque-free conditions are outlined theoretically. Physical

parameters that will probably trigger the onset of chaotic motions can be determined accordingly. Results from MHM

algorithms are crosschecked with Poincare sections together with Lyapunov characteristic exponents.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The chaotic dynamics of mechanical systems have attracted the attention of many scientists and engineers
for several decades. Investigations on chaos help to better design and suppress the behaviors of mechanical
systems as suggested in Thompson and Stewart [1], Parker and Chua [2], Chen and Leung [3] and amongst
others. The investigations on rotational motions of a solid with a cavity completely liquid-filled can be traced
back to a century ago. Problems of contained rotating fluids have many applications (see Refs. [4–15]). The
salient features of motions of an ideal, incompressible liquid filling completely the ellipsoidal cavity of a solid
are proved to be a uniform vortex and were fully investigated by Zhukovsky and Rumyantsev [4]. This
interesting case is called the Zhukovsky–Rumyantsev (ZR) liquid-filled solid throughout this paper. For
certain cases the ZR liquid-filled solid could be thought of as a gyrostat. Studies on the rotational motions of a
gyrostat are significant to the controlling design of the artificial satellite and spinning liquid-filled projectiles
(see Refs. [16–19]).

Chaotic instability of the spinning asymmetric top was discussed numerically in Ref. [20]. The chaotic dynamics
of rigid bodies were studied by Ziglin [21], Holmes and Marsden [22], and Kozlov [23] using Melnikov integrals
[24]. Holmes and Marsden [25] invented a Melnikov–Holmes–Marsden (MHM) integral for the disturbed multi-
degrees-of-freedom Hamiltonian system. MHM integral algorithms will be the essential foundation of this article’s
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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contributions. The earlier studies relevant to the application of MHM integrals to chaos detection of the disturbed
gyrostat system may be found in Ref. [26] using Deprit’s canonical variables [27]. The instability investigations on
the attitude dynamics of artificial or natural satellites without resorting to Deprit’s variables may be found in
Refs. [28–32]. It is noted that the fundamental Melnikov methods were extensively discussed in Refs. [33–36].

Karapetyan and Prokomina [37], Rudenko [38] and others in their lists of references investigated the
stability conditions of steady motions of the liquid-filled gyrostat rolling without sliding on the plane using
Lyapunov’s functionals associated with first integrals. Applications on first integrals may be found in Kozlov
[23] and Conte [39] amongst others.

In this paper, the chaotic rotations of ZR liquid-filled solids due to either the orbital frequency or the
damped, time-periodical moments are investigated. Chaos considered in this article is in the sense of Smale’s
horseshoe. The authors’ previous algorithms [12,13] are extended here to establish some new effective
algorithms for the prediction of chaotic rotational motions of ZR liquid-filled solids. The preliminary results
on chaotic motions of the ZR liquid-filled solid under gravity-gradient torques were found in Ref. [11], where
the chaotic motions were regarded as the heteroclinic bifurcation due to the perturbation moment of second
order O(N2) where N is the orbital frequency. Some new progresses recently made are presented in detail here.
Some results of the ZR liquid-filled gyrostat under dissipative moments plus periodic torques have been
derived from the disturbed Hamiltonian mechanics in terms of Eulerian angles and conjugate angular
momenta in Ref. [12]. Kuang et al. [13] further investigated the liquid-filled ellipsoid based upon the noslip
contact condition between the ellipsoid and the perfectly rough horizontal plane. The model scenarios studied
in this article are different from all the previous publications of authors.

The paper is organized in the sequence of formulating the set of disturbed Hamiltonian equations, obtaining
the heteroclinic orbit and applying MHM integrals for the determination of chaos as follows. In Section 1, the
background of dynamics of ZR liquid-filled solids under small torques is introduced briefly. In Section 2,
Eulerian equations of ZR liquid-filled solids subjected to small moments and the Helmholtz equations of a
liquid in an ellipsoidal cavity together with Poisson’s equations of directional cosines are described for
subsequent development. In Section 3, a set of canonical variables are constructed to establish the disturbed
Hamiltonian equations of the system under investigation. In Section 4, the heteroclinic orbit of rotational
motions of the torque-free symmetrical ZR liquid-filled solid and the key issue in the construction of the
heteroclinic orbit are given for completeness. In Section 5, the MHM integral of the ZR liquid-filled solid
under periodically forced moments is derived and its application is discussed. In Section 6, criteria to
determine the onset of chaos for the disturbed ZR liquid-filled solid under the action of conservative moments
due to the orbital frequency are established according to MHM integrals. In Section 7, the derivation of
MHM integrals for the perturbed liquid-filled ellipsoid sliding and rolling on the perfectly smooth plane is
investigated. In Section 8, the 4th order Runge–Kutta algorithms are used to simulate the long-term chaotic
dynamics which are crosschecked with Poincare sections and Lyapunov characteristic exponents. In Section 9,
singularities involved in MHM integrals are discussed and the paper is concluded with a few remarks.

2. Governing equations

We consider a mechanical system of a ZR liquid-filled solid circularly orbiting the Earth. O is the center of
mass of the solid containing an ellipsoidal cavity fully filled with an ideal liquid shown in Fig. 1. Define two
Cartesian coordinate systems OXYZ and Oxyz having a common origin at the center of mass O of the system.
OXYZ is the local-vertical-local-horizontal (LVLH) coordinate system with OX along the orbit direction, OY

normal to the orbit plane and OZ toward the Earth center. Effects arising from the orbital frequency will be
included. OXYZ will degenerate to the inertial reference system when the orbital frequency vanishes. Oxyz

coincides with principal axes of inertia of the ZR liquid-filled solid. Let bx ¼ by and bz be the semi-axes of the
cavity and ek be the offsets of the center of the cavity from O. The bounding surface of the cavity isP

k¼x;y;zðY k � ekÞ
2=b2

k ¼ 1, where Yk are coordinates measured in Oxyz and the subscript index k ¼ x,y,z

unless stated otherwise throughout this paper. We designate ex ¼ ey ¼ 0 and ez 6¼0, which represent that the
axis of symmetry of the cavity coincides with the body-fixed axis Oz. Let Ok be the components of the angular
velocity of the ZR liquid-filled solid. Pk are the components of the vorticity of the contained liquid according
to the expression curl~V ¼ ðPxðtÞ;PyðtÞ;PzðtÞÞ, where ~V is the velocity of liquid particle. Ick denote the sums of
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Fig. 1. Configuration of the orbiting ZR liquid-filled solid with the orbital frequency N.
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moments of inertia of the solid and of the Zhukovsky solid equivalent to the consolidated liquid with respect
to Oxyz. Jck are the differences between the moments of inertia of a consolidated liquid and of the Zhukovsky
solid equivalent to the contained liquid with respect to Oxyz. The theorem on the angular momentum about
the center of gravity O with respect to the mobile axes Oxyz gives

Icx

dOx

dt
þ Jcx

dPx

dt
þ ðIczOz þ JczPzÞOy � ðIcyOy þ JcyPyÞOz ¼ Lx; ðx y zÞ, (1)

where Icx ¼ Iex þ ð1=5ÞMf ðb
2
y � b2

zÞ
2=ðb2

y þ b2
zÞ þMf ðe

2
y þ e2zÞ, (x y z), and Mf is the mass of liquid filling the

ellipsoidal cavity (see Ref. [4]). The notation (x y z) abbreviates that one of the three equations is written down
and the other two can be obtained by cyclic permutation of indices (x-y-z). Designate Lk ¼ � Mk

ðOx; . . . ;Px; . . . ; gx; . . . ; tÞ as the applied moments to the ZR liquid-filled solid. gk are the direction cosines of
axis OZ in relation to Oxyz. e is a small parameter (0oe51). d/dt denotes differentiation with respect to time.
The Helmholtz equations of uniform vortex motion for the liquid contained in the ellipsoidal cavity in x, y and
z axes, are

Igx

dPx

dt
¼ IgzPz

JcyðPy � OyÞ

Igy

� IgyPy

JczðPz � OzÞ

Igz

; ðx y zÞ, (2)

where Igx ¼ ð2=5ÞMf bybz, (x y z) and Jcx ¼ ð4=5ÞMf b2
yb2

z=ðb
2
y þ b2

zÞ, (x y z) (see Ref. [4]). It is remarked that

Helmholtz equations (2) hold only for the uniform vortex motion of the ideal, incompressible liquid contained
in the ellipsoidal cavity under the conditions that the center of the cavity is located on the symmetrical axis of
the ZR liquid-filled solid and that the disturbing moments do not change the form of Helmholtz equations (2).
Since the line spanned by gk remains always vertical, Poisson’s equations become,

dgx

dt
¼ Ozgy � Oygz; ðx y zÞ, (3)

where g2x þ g2y þ g2z ¼ 1.

The governing equations of rotational motions of the ZR liquid-filled solid comprise Eulerian equations (1)
of the moment of momentum of the whole system, Helmholtz equations (2) of the rotating ellipsoidal mass of
the liquid and Poisson’s equations (3) of direction cosines. From these equations, one can derive the disturbed
Hamiltonian equations of the ZR liquid-filled solid in terms of a set of Deprit’s variables and construct the
heteroclinic orbit of a torque-free ZR liquid-filled solid in the following sections.
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3. Disturbed Hamiltonian equations

The Hamiltonian equations of rotational motions of the ZR liquid-filled solid disturbed by small moments
will be derived in this section. State variables in the systems (1), (2) and (3) are Ok(t), Pk(t), and gk(t). These
variables are not readily suitable for applying the MHM integrals to determine the occurrence of chaotic
rotational motions. In order to derive the disturbed Hamiltonian equations that are directly suitable for the
applications of MHM integrals, appropriate transformations into a new set of canonical variables in
G ¼ (L,G,H,l,g,h,Lf,lf) are introduced, where the first six variables are Deprit’s variables depicted in Fig. 2 of
Kuang et al. [9,13] and the remaining two newly introduced variables, Lf and lf, represent the uniform vortex
motion of the contained liquid. The fundamental theory of Hamiltonian mechanics may be found in Ref. [40].
Procedures for the derivation of the disturbed Hamiltonian equations of the ZR liquid-filled solid are briefly
exposed here. The kinetic energy of the whole ZR liquid-filled solid is given by

T ¼
1

2

X
k¼x;y;z

ðIwkO2
k þ I fky

2
k þ 2IgkOkykÞ, (4)

where Iwx ¼ Icx+Jcx, (x y z), with Iwk denoting the principal moments of inertia of the entire system with
respect to Oxyz, Ifk and Igk being the principal moments of inertia of the contained liquid Ifx ¼Mf(by

2+bz
2)/5,

(x y z); and

yx ¼ ðPx � OxÞ
2bybz

b2
y þ b2

z

; ðx y zÞ. (5)

The transformations between variables Ok(t), Pk(t) and canonical variables in G take the form

qT

qOx

¼ IwxOx þ Igxyx9G sin b sin l;
qT

qOy

¼ IwyOy þ Igyyy9G sin b cos l;

qT

qOz

¼ IwzOz þ Igzyz9G cos b ¼ L;
qT

qyx

¼ I fxyx þ IgxOx9Gf sin bf sin lf ;

qT

qyy

¼ I fyyy þ IgyOy9Gf sin bf cos lf ;
qT

qyz

¼ I fzyz þ IgzOz9Gf cos bf ¼ Lf ;

(6)

where qT/qOk and qT/qyk are partial derivatives computed from Eq. (4). Canonical variables in G are
functions of time t only. So are the angular variables b and bf. The physical meanings of the original Deprit’s
variables in G may be found in Refs. [9,13]. The definition of newly introduced canonical variables Lf and lf
may be realized from Eqs. (6) where

qT

qOx

� �2

þ
qT

qOy

� �2

þ
qT

qOz

� �2

¼ G2;
qT

qyx

� �2

þ
qT

qyy

� �2

þ
qT

qyz

� �2

¼ G2
f ¼ const: (7)

The second of Eqs. (7) expresses the Helmholz theorem about the constant vorticity of the liquid contained
in the ellipsoidal cavity. The relations between direction cosines and Deprit’s variables are

gx ¼ ðsin I sin gÞ cos l þ ðcos I sin bþ sin I cos b cos gÞ sin l,

gy ¼ �ðsin I sin gÞ sin l þ ðcos I sin bþ sin I cos b cos gÞ cos l,

gz ¼ cos I cos b� sin I sin b cos g, ð8Þ

where gx ¼ siny sinf, gy ¼ siny cosf, and gz ¼ cosy. Eulerian angles c, y and f are shown in Fig. 2 of Kuang
et al. [9,13]. Consider the body-fixed rotational sequence c-y-f for the rotational motion of the ZR liquid-
filled solid in the LVLH coordinate system OXYZ (see Ref. [30]). The angular velocity components can be
expressed in terms of Eulerian angles and their angular rates as

Ox ¼ Orx �N dx2; Oy ¼ Ory �N dy2; Oz ¼ Orz �N dz2, (9)
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where

Orx ¼
dc
dt

sin y sin fþ
dy
dt

cos f; dx2 ¼ cos f sin cþ sin f cos c cos y;

Ory ¼
dc
dt

sin y cos f�
dy
dt

sin f; dy2 ¼ � sin f sin cþ cos f cos c cos y;

Orz ¼
dc
dt

cos yþ
df
dt
; dz2 ¼ � cos c sin y;

and N ¼

ffiffiffiffiffiffiffiffiffiffiffi
m
�

d3
e

q
is the orbital frequency. m is the gravitational attraction constant of the Earth. de is the

distance of the mass center of the ZR liquid-filled solid from the Earth. When N ¼ 0, then OXYZ becomes an
inertial coordinate system. Angles c�h, g, and f�l are related to angles I, y, and b with the usual identities of
spherical trigonometry for the spherical triangle PNM of Fig. 2 of Refs. [9,13], i.e.

sin y cosðf� lÞ ¼ cos I sin bþ sin I cos b cos g,

sin y sinðf� lÞ ¼ sin I sin g; sin y sinðc� hÞ ¼ sin b sin g,

sin y cosðc� hÞ ¼ sin I cos bþ cos I sin b cos g, ð10Þ

where I is the angle between momenta H and G, and the angle b is a function of new momenta G and L, i.e.,
cosI ¼ H/G, and cosb ¼ L/G. From relations (9) and (10), one can transform Eqs. (1)–(3) into the disturbed
Hamiltonian equations in terms of canonical variables in G as follows:

dL

dt
¼ �

qT

ql
þ �f L;

dG

dt
¼ �

qT

qg
þ �f G;

dH

dt
¼ �

qT

qh
þ �f H ;

dl

dt
¼

qT

qL
þ �f l ,

dg

dt
¼

qT

qG
þ �f g;

dh

dt
¼

qT

qH
þ �f h;

dLf

dt
¼

qT

qlf

þ �f Lf
;

dlf

dt
¼ �

qT

qLf

þ �f lf
, ð11Þ

where the Hamiltonian of the system under investigation has been constructed as the kinetic energy, T in Eq. (4),
of the ZR liquid-filled solid whose state variables Ok and yk are related to canonical variables in G from Eqs. (6)
such as

Ok ¼
I fk

qT
qOk
� Igk

qT
qyk

IwkI fk � I2gk

; yk ¼
�Igk

qT
qOk
þ Iwk

qT
qyk

IwkI fk � I2gk

. (12)

Partial derivatives in Eqs. (11) are

qT

ql
¼ ðG sin b cos lÞOx � ðG sin b sin lÞOy;

qT

qg
¼

qT

qh
¼

qT

qH
¼ 0,

qT

qL
¼
ð� cos b sin lÞ

sin b
Ox þ

ð� cos b cos lÞ

sin b
Oy þ Oz, ð13Þ

qT

qG
¼

sin l

sin b
Ox þ

cos l

sin b
Oy;

qT

qlf

¼ ðGf sin bf cos lf Þyx � ðGf sin bf sin lf Þyy,

qT

qLf

¼
ð� cos bf sin lf Þ

sin bf

yx þ
ð� cos bf cos lf Þ

sin bf

yy þ yz, ð14Þ

f l ¼ ðMx cos l �My sin lÞ
�
ðG sin bÞ; f lf

¼ f Lf
¼ 0; f L ¼Mz,

f G ¼Mz cos bþ ðMx sin l þMy cos lÞ sin b, ð15Þ
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f H ¼Mx½ðsin I sin gÞ cos l þ ðcos I sin bþ sin I cos b cos gÞ sin l�

þMy½�ðsin I sin gÞ sin l þ ðcos I sin bþ sin I cos b cos gÞ cos l�

þMz½cos I cos b� sin I sin b cos g�

� ðsin I sin hÞReG=ð3NÞ, ð16Þ

f g ¼Mx

�ðsin I cos bþ cos I sin b cos gÞ cos l þ ðcos I sin b cos b sin gÞ sin l

G sin I sin b

þMy
ðsin I cos bþ cos I sin b cos gÞ sin l þ ðcos I sin b cos b sin gÞ cos l

G sin I sin b

þMz

ð� cos I sin b sin gÞ

G sin I
�

Re cos h

3N sin I
, ð17Þ

f h ¼Mx

cos g cos l � sin g sin l cos b

G sin I

�My

cos g sin l þ sin g cos l cos b

G sin I
þMz

sin b sin g

G sin I
þ

Re cos h cos I

3N sin I
, ð18Þ

where

Re ¼
ðsin b sin gÞ2 þ ðsin I cos bþ cos I sin b cos gÞ2

ðsin I sin gÞ2 þ ðcos I sin bþ sin I cos b cos gÞ2
,

Substituting transformations (8) and (12) into Mk ¼MkðOx; . . . ;Px; . . . ; gx; . . . ; tÞ in Eqs. (13)–(18), we can
deduce that the disturbed Hamiltonian equations (11) governing the rotational motions of the orbiting ZR
liquid-filled solid are expressed in terms of canonical variables in G. Terms containing N�1 in Eqs. (16)–(18)
reflect the influence of the orbital rate on variables H, g and h. In Eqs. (11), the small parameter e ¼ 3N2

represents a coefficient of gravity-gradient torques in the case of the orbiting ZR liquid-filled solid. When N

approaches zero, the disturbed Hamiltonian equations can be modified to describe the motion of the ZR
liquid-filled solid under small moments Lk ¼ eMk with e being arbitrarily small and independent of N by
annihilating the terms containing 1/N in Eqs. (16)–(18).

Note that the disturbed Hamiltonian equations (11) of the ZR liquid-filled solid are analogous to those of
the gyrostat model derived by Kuang et al. [9] and of the rigid-body model derived by Tong and Taborrak
[26]. The influences of the orbital rate and of the uniform vortex motion of a liquid on Deprit’s variables are
included in the disturbed Hamiltonian equations. The relations between Eulerian angular rates and angular
velocities are given by Eqs. (9) where the orbital rate complicates the derivation of the disturbed Hamiltonian
equations. The derivations become much lengthier than those of Kuang et al. [9], due to the involvement of the
orbit rate and of the uniform vortex of the contained liquid, and are omitted here for brevity.

The disturbed Hamiltonian equations (11) in terms of canonical variables in G are ready for the application
of MHM integrals to determine whether there is a transversal intersection between the stable and unstable
manifolds of the liquid-filled symmetrical solid subjected to small torques. To this end, we need to explore the
Hamiltonian structure of undisturbed equations of rotational motions of the ZR liquid-filled solid and the
associated homoclinic/heteroclinic orbit. Two applications: (1) chaotic oscillations of the orbiting ZR liquid-
filled solid, either conservative or dissipative; and (2) chaotic dynamics of the sliding liquid-filled spheroidal
solid rolling on the perfectly smooth horizontal plane, either conservative or dissipative, will be investigated.
We shall first obtain the homoclinic/heteroclinic orbit of the symmetrical ZR liquid-filled solid under torque-
free conditions in the next section.
4. Heteroclinic orbits

To keep the idea of this article self-sustained, the acquisition of heteroclinic orbits and the construction of
heteroclinic orbits of the symmetrical ZR liquid-filled solid are briefly presented in Sections 4.1 and 4.2,
respectively. The detailed procedures may be found in Ref. [12].
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4.1. The acquisition of heteroclinic orbits

Rotational motions of the ZR liquid-filled solid are always governed by Eulerian equations (1), Helmholtz
equations (2) and Poisson equations (3). However, angular velocity components ŌkðtÞ of the ZR liquid-filled
solid and uniform vortex components P̄kðtÞ of the contained liquid are uncoupled from direction cosines
under torque-free motions. From Eqs. (1) and (2) when Lk ¼ 0, one obtains

Icx

dŌx

dt
þ Jcx

dP̄x

dt
þ ðIcz � IcyÞŌyŌz þ JczP̄zŌy � JcyP̄yŌz ¼ 0; ðx y zÞ, (19)

dP̄x

dt
¼ 2b2

x

ŌzP̄y

b2
x þ b2

y

�
ŌyP̄z

b2
x þ b2

z

" #
� 2P̄yP̄z

b2
xðb

2
z � b2

yÞ

ðb2
x þ b2

yÞðb
2
x þ b2

zÞ
; ðx y zÞ, (20)

where the over-bar denotes the particular solution of the torque-free ZR liquid-filled solid. The symmetry of
the geometrical shape of the ZR liquid-filled solid about z-axis, i.e., bx ¼ by and Icx ¼ Icy, yields Jcx ¼ Jcy. The
torque-free Euler–Helmholtz equations (19) and (20) have first integrals,X

k¼x;y;z

ðIckŌ
2

k þ JckP̄
2
kÞ ¼ 2E ¼ const;

X
k¼x;y;z

ðIckŌk þ JckP̄kÞ
2
¼ G2

p ¼ const;

ðbybzÞ
2P̄2

x þ ðbxbzÞ
2P̄2

y þ ðbybxÞ
2P̄2

z ¼ P2 ¼ const; Ōz ¼ const. ð21Þ

The first of Eqs. (21) denotes the first integral of energy of the torque-free ZR liquid-filled solid. The second
represents the first integral of angular momenta. The third implies the Helmholtz theorem about the constant
vorticity of the liquid in the ellipsoidal cavity. The fourth is the first integral of Eulerian equations due to the
geometrical symmetry. Using elliptic integral theory, periodic solutions of the undisturbed symmetrical ZR
liquid-filled solid were presented in Ref. [12]. For further discussion, we single out the heteroclinic orbits of the
torque-free symmetrical ZR liquid-filled solid from first integrals (21) associated with the torque-free
Euler–Helmholtz equations (19) and (20) in terms of Ōk and P̄k as follows:

ŌxðtÞ ¼ ðS0 þ S1P̄z þ S2P̄
2
zÞP̄x �

ðb2
x þ b2

zÞ

2b2
z

P̄y
dP̄z

dt

 !,
R0 þ R2P̄

2
z

� �
,

ŌyðtÞ ¼ ðS0 þ S1P̄z þ S2P̄
2
zÞP̄y þ

ðb2
x þ b2

zÞ

2b2
z

P̄x

dP̄z

dt

 !,
R0 þ R2P̄

2
z

� �
,

Ōz ¼ constant; P̄zðtÞ ¼ ðD1 þD2 tanh
2 uÞ
�
ðD3 þD4 tanh

2 uÞ,

P̄xðtÞ ¼ expðP̄RðtÞÞ½P̄xðtaÞ cos ðP̄I ðtÞÞ � P̄yðtaÞ sin ðP̄I ðtÞÞ�,

P̄yðtÞ ¼ expðP̄RðtÞÞ½P̄xðtaÞ sin ðP̄I ðtÞÞ þ P̄yðtaÞ cos ðP̄I ðtÞÞ�,

dP̄z=dt ¼ 2bðD2D3 �D1D4Þðtanh u� tanh3 uÞ
� 	�

ðD3 þD4tanh
2 uÞ2, (22)

where P̄I ðtÞ and P̄RðtÞ are defined by

P̄RðtÞ ¼

Z t

ta

PRðsÞds; P̄I ðtÞ ¼

Z t

ta

PI ðsÞds; PRðtÞ ¼ �
b2

x

b2
z

P̄z

dP̄z

dt

,
ðR0 þ R2P̄

2
zÞ,

PI ðtÞ ¼
2b2

xðS0 þ S1P̄z þ S2P̄
2
zÞP̄z

ðb2
x þ b2

zÞðR0 þ R2P̄
2
zÞ
þ
ðb2

z � b2
xÞ

ðb2
z þ b2

xÞ
P̄z � Ōz, (23)

in which u ¼ b(t�ta) and ta is a constant. Quantities b, S0, S1, S2, R0, R2, and Di for i ¼ 1,2,3,4 which can be
found in Refs. [12,13] are functions with arguments Mf, Ick, Jck, E, Gp, P, and Ōz. Detailed derivation
procedures are omitted here for brevity. From the first integral of conservation of angular momenta and the
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third of Helmholtz equations (20), we find that P̄z satisfies the following equation:

ðdP̄z=dtÞ2 ¼ a4P̄
4
z þ a3P̄

3
z þ a2P̄

2
z þ a1P̄z þ a0, (24)

where coefficients a4,a3,y, and a0 are functions of arguments Mf, Ick, Jck, E, Gp, P, and Ōz. Let Pzi for

i ¼ 1,2,3,4 be real roots of the polynomial equation
P4

j¼0ajPj
z ¼ 0, and satisfy constraints

Pz14Pz2 ¼ Pz34Pz4, then particular orbits of the torque-free ZR liquid-filled solid become heteroclinic
orbits in Eqs. (22). Periodic solutions of Eq. (24) can be found in Ref. [12]. From heteroclinic orbits (22), the
limiting values

lim
t!�1

PRðtÞ ¼ lim
t!�1

PI ðtÞ ¼ 0, (25)

constitute the necessary conditions for the existence of heteroclinic orbits because integrals (23) will converge
under conditions (25). Otherwise, integrals (23) diverge. Thus, the 7 parameters Mf, Ick, Jck, and 6 integral

constants E, Gp, P, Ōz, Px(ta) and Py(ta) meeting Eqs. (25) will produce heteroclinic orbits. Obtaining at first
heteroclinic orbits is important before applying MHM integrals. Complete solutions of heteroclinic orbits
under torque-free conditions depend on the six initial conditions or equivalently on the six first integrals E, Gp,

P, Ōz, P̄xðtaÞ and P̄yðtaÞ.

4.2. The construction of heteroclinic orbits

One may perform a blanket search for heteroclinic orbits from the original 13 dimensional space spanned by
four integral constants E, Gp, P, Ōz and the set of nine parameters Mf, Ick, Jck, P̄xðtaÞ, and P̄yðtaÞ. However, it
is time-consuming. When we fix the set of 9 parameters above-mentioned, by using the Newton–Raphson
reiteration algorithms we may search for the numerical solution of the five unknowns Pz1, Pz2, Pz4, E, and Gp

based on the Vieta’s theorem and Eqs. (25). For simulation, the semi-axis lengths of the ellipsoidal cavity are
designated throughout this article as bx ¼ 0.3m, by ¼ 0.3m and bx ¼ 0.1m. The mass of the contained liquid
is assumed as Mf ¼ 20 kg and the total mass of the ZR liquid-filled solid m ¼ 25 kg. The sums of moments of
inertia of the rigid shell and of Zhukovsky equivalent body of the ZR liquid-filled solid with respect to Oxyz

are Icx ¼ Icy ¼ 3 kgm2, and Icz ¼ 7 kgm2. Fig. 2 is depicted to describe energy and momentum curves
corresponding to heteroclinic orbits of the symmetrical torque-free ZR liquid-filled solid when given P ¼ 6.
Fig. 2 demonstrates that many scenarios of rotational motions of the ZR liquid-filled solid are of heteroclinic
structures. The acquired solutions are crosschecked by the following alternative algorithms.

When given two of the real roots Pz1, Pz4, and 7 parameters Mf, Ick, and Jck, an effective algorithm can be
invented to find four integral constants E, Gp, P, and Ōz. Since limt!�1P̄zðtÞ ¼ P̄z2, we could deduce that
Eqs. (25) reduce to a polynomial equation of degree 10 for Pz2

X10
j¼0

dj P
j
z2 ¼ 0, (26)

where coefficients dj for j ¼ 0,1,2,y,10 are computed by symbolic manipulations and are functions of
arguments bk, Ick, Jck,Pz1 andPz4. It is noted that the Vieta theorem of a polynomial equation was adopted in
the derivation of Eq. (26). When essential physical parameters are given, heteroclinic orbits in terms of ŌkðtÞ

and P̄kðtÞ are computed from Eqs. (22). Heteroclinic orbits constructed from Eqs. (22) will be exploited to
investigate the effect of small moments on rotational motions of the ZR liquid-filled solid in the following
sections.

5. The MHM integral of the periodically forced ZR liquid-filled solid

After obtaining heteroclinic orbits, we are in a position to investigate chaotic oscillations in the damped,
periodically perturbed ZR liquid-filled solid using the MHM integral developed originally by Holmes and
Marsden [25]. The Melnikov-type integral is effective for determining the onset of transversal homoclinic/
heteroclinic orbits in the Poincare map of the perturbed system by measuring the ‘‘distance’’ between the
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Fig. 2. Energy and momentum curves corresponding to the heteroclinic orbits of the torque-free symmetric ZR liquid-filled solid.

A.Y.T. Leung, J.L. Kuang / Journal of Sound and Vibration 302 (2007) 540–563548
stable and unstable manifolds associated with the saddle point of the system such as the ZR liquid-filled solid.
Putting the ZR liquid-filled solid in the external viscous media and neglecting the effect due to the orbital
frequency, one can express forcing functions of the disturbed Hamiltonian equations (11) and (15)–(19)
after deleting terms with a coefficient 1/N. Assume that external moments with linear damping mechanisms
take the form

Tk ¼ �Mk ¼ � �skŌk þ Uk þ Lk sin ðOextÞ

 �

, (27)

where sk40 representing the damping effect of the surrounding media of the ZR liquid-filled solid; Lk9Lk

ðOx; . . . ;Px; . . . ; gzÞ and Uk9UkðOx; . . . ;Px; . . . ; gzÞ are known functions. Oex is a constant representing the
forcing frequency. Dissipation due to the contained liquid is not included in Eqs. (2) because Helmholtz
equations cannot be obtained exactly from Navier–Stokes equations of a viscous liquid and the Hamiltonian
structure of the ZR liquid-filled solid under torque-free conditions will be destroyed when considering the
dissipation of the liquid. In order to develop a criterion for the judgment of onsets of chaotic rotational
dynamics, we need to study the existence of real zeros of the MHM integral in association with of heteroclinic
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orbits. The MHM integral in the case of the periodically excited ZR liquid-filled solid takes the form

Mðt0Þ ¼

Z þ1
�1

f ðL̄; Ḡ; H̄ ; l̄; ḡ; h̄; L̄F ; l̄f ; tþ t0Þdt, (28)

where ap ¼ ðqT=qGÞðGpÞ, LF9� Lf ,

f ¼
qT

qL
f L þ

qT

ql
f l þ

qT

qG
� ap

� �
f G þ

qT

qg
f g þ

qT

qH
f H þ

qT

qh
f h þ

qT

qLF

f LF
þ

qT

qlf

f lf
.

t0 2 ½0; 2p=Oex� is the initial time. The notation Gp represents the set of the hyperbolic fixed point in terms of
canonical coordinates Lp, Gp, Hp, lp, gp, hp, LFp and lfp corresponding to canonical variables in G, in which the
subscript ‘‘p’’ denotes the ‘‘hyperbolic’’ property as expected. Partial derivatives qT/qL,yqT/qLF in the
MHM integral (28) of the disturbed Hamiltonian equations (11) are presented in Eqs. (12)–(14), respectively.
The integrand f of the MHM integral is a function of amplitudes of disturbances: fL, fG, fH, fl, fg and fh, as
given in Eqs. (15)–(19) after deleting terms with a coefficient 1/N and the integrand f is given in Deprit’s
variables l̄ðtÞ, L̄ðtÞ, l̄f ðtÞ, L̄f ðtÞ, and ḡðtÞ which can be derived, in principle, from Eqs. (6) for heteroclinic orbits
ŌkðtÞ and P̄kðtÞ. Plugging Eqs. (12)–(19) after deleting terms with a coefficient 1/N into (28) and grouping
terms according to Mk yield the following version of the MHM integral:

Mðt0Þ ¼

Z þ1
�1

X
k¼x;y;z

DkðtÞMkðŌx; . . . ; P̄x; . . . ; ḡx . . . ; tþ t0Þ

( )
dt, (29)

where, Gp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k¼x;y;zðIckOkp þ JckPkpÞ

2
q

, ḡkðtÞ ¼ ½IckŌkðtÞ þ JckP̄kðtÞ�=Gp, DkðtÞ ¼ ŌkðtÞ � apḡkðtÞ, and

ap ¼
Gp ðIcxOxp þ JcxPxpÞOxp þ ðIcyOyp þ JcyPypÞOyp


 �
ðIcxOxp þ JcxPxpÞ

2
þ ðIcyOyp þ JcyPypÞ

2
.

The MHM integral (29) for the damped, periodically perturbed ZR liquid-filled solid shows that external
moments Mk are functions with arguments Ōk, P̄k, and ḡk. The MHM integral (29) may be degenerated into
the criterion for dealing with chaotic dynamics of the damped, periodically disturbed gyrostat [8,9]. Tedious
manipulations in deriving the MHM integral (29) are omitted for brevity. It is remarked that much in the same
way, one can formulate a similar MHM integral to Eq. (29) based on the disturbed Hamiltonian equations in
terms of Euler’s variables c, y, f, pc, py, pf, Lf and lf (see Ref. [12]). It is amazing that the MHM integral (29)
is always convergent here as limt!�1DkðtÞ ¼ 0. From the MHM integral (29), one deduces that the integrand
is explicitly dependent on the hyperbolic fixed point in terms of ap. The MHM criterion (29) has symmetric
properties in amplitudes of disturbance-moments Mk and heteroclinic orbits ŌkðtÞ and P̄kðtÞ. Substituting Eqs.
(27) into the MHM integral (29), we obtain

Mðt0Þ ¼ I0 þ Ic cos ðOext0Þ þ Is sin ðOext0Þ, (30)

where

I0 ¼

Z þ1
�1

X
k¼x;y;z

�skŌkðtÞ þ Ūk


 �
DkðtÞdt,

Ic ¼

Z þ1
�1

X
k¼x;y;z

L̄kDkðtÞ sin ðOextÞ

 �

dt; Is ¼

Z þ1
�1

X
k¼x;y;z

L̄kDkðtÞ cos ðOextÞ

 �

dt,

L̄k9LkðŌx; . . . ; P̄x; . . . ; ḡxÞ; Ūk9UkðŌx; . . . ; P̄x; . . . ; ḡxÞ.

From Eq. (30), if

d ¼ dðOexÞ ¼ I0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2c þ I2s

q
p1, (31)

then, the MHM integral (30) will have real zeros with respect to the argument t0. The existence of real zeros of
the MHM integral (30) means transversal intersections between the stable and unstable manifolds of the
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periodically perturbed ZR liquid-filled solid. From physical parameters presented in Section 8.2 we may depict

the zeros of the MHM integral, sin(Oext0), against the scaled initial component of vortex px ¼

PxðtaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ R2P2

z2

q
for the ZR liquid-filled solid with energy dissipation in Fig. 3 according to Eq. (31).

Hence, one should highlight that the MHM integral (29) can be used to predict certain combinations of
physical parameters which will trigger occurrences of chaotic rotations of the ZR liquid-filled solid when
periodically disturbed appropriately. Applications of the MHM integral (30) will be further studied
numerically in subsequent sections.
6. Chaos in the ZR liquid-filled solid in circular orbit

In this section, conditions for occurrences of chaotic motions of the symmetrical ZR liquid-filled solid
in circular orbit will be established using the MHM integral developed by Holmes and Marsden [22]. When
the ZR liquid-filled solid is orbiting circularly (see Fig. 1), one has 0o� ¼ 3N2

51 since components of the
gravity-gradient torque become Lx ¼ 3N2(Iwz�Iwy)gzgy, (x y z). It appears that the order of Lk is O(N2), but the
order of the perturbation torque due to the following angular velocity (i.e., the orbital frequency N) is O(N).
We should consider the effect arising from the latter. The set of parameters Ick, Jck, E, Gp, P, and Ōz

aforementioned, which can possibly trigger onsets of chaotic motions of the ZR liquid-filled solid due to the
effect of the orbital frequency N with appropriate initial conditions, will be determined using the MHM
integral (see Ref. [22]) briefly below. The kinetic energy plus potential of the orbiting ZR liquid-filled solid
takes the form

Ha ¼ TG þN H1 þOðN2Þ, (32)

where TG is the kinetic energy of the orbiting ZR liquid-filled solid modified from Eq. (4) and H1 denotes the
contribution of circular motions to the potential energy of the orbiting ZR liquid-filled solid. TG and H1 are
defined as

TG ¼ 0:5
X

k¼x;y;z

ðIwkO2
rk þ I fky

2
k þ 2IgkOrkykÞ; H1 ¼ �

X
k¼x;y;z

ðIwkOrk þ IgkykÞdk2


 �
. (33)

Using transformations similar to Eqs. (6), we can formulate the disturbed Hamiltonian equations of the ZR
liquid-filled solid in circular orbit with the approximate Hamiltonian T ¼ TG. Lengthy derivations are here
omitted for brevity. When N�0, the rotational motion reduces to a torque-free motion as seen from Eqs. (19)
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and (20). Both the momentum G ¼ Gp and the new momentum H are constants, and so is the canonical
variable h. Rotational motions of the orbiting ZR liquid-filled solid under torque-free conditions are expressed
by a Hamiltonian system of the form

dL̄

dt
¼ �

qTG

ql̄
;

dl̄

dt
¼

qTG

qL̄
;

dL̄f

dt
¼

qTG

ql̄f

;
dl̄f

dt
¼ �

qTG

qL̄f

, (34)

where the over-bar denotes heteroclinic orbits of the torque-free symmetrical ZR liquid-filled solid. It is
highlighted that along heteroclinic orbits (22) there are two first integrals H and h which are derivable from
Eqs. (11). Hamiltonian equations (34) in terms of generalized Deprit’s variables are equivalent to the torque-
free Euler–Helmholtz equations (19) and (20). Heteroclinic orbits in terms of L̄, l̄, L̄f , and l̄f are related to
those in terms of ŌrkðtÞ ¼ ŌkðtÞ and P̄kðtÞ in Eqs. (22). Chaotic dynamics of the disturbed Hamiltonian system
in the case of the ZR liquid-filled solid in circular orbit may be determined by the MHM integral developed by
Holmes and Marsden [22]. From heteroclinic orbits (22), the torque-free Euler–Helmholtz equations (19) and
(20) have equilibrium points of the form

lim
x!�1

ŌkðtÞ ¼ Okp; lim
x!�1

P̄kðtÞ ¼ Pkp, (35)

where Okp andPkp can be computed from the limiting processes applying to heteroclinic orbits (22). It is noted
that Pzp should be equal to the selected root Pz2 of the polynomial equation of degree 10 in Eq. (26).
The resolution of Pzp is quite onerous because one must at first compute coefficients dj for j ¼ 0,1,y,10 of
Eq. (26). In order to determine the hyperbolicity of fixed points in Eqs. (35), one should compute linearized
eigenvalues about fixed points of Jacobian matrix of the vector field (34). If eigenvalues have nonzero real
parts then fixed points are hyperbolic. The computation of the above-mentioned Jacobian matrix of the vector
field in terms of canonical variables l̄, L̄, l̄f , and L̄F where L̄F ¼ �L̄f is omitted here for brevity. Following
Holmes and Marsden [22], one can determine if the stable and unstable manifolds of periodic orbits intersect
transversally by calculating the MHM integral

Mðg0Þ ¼

Z þ1
�1

TG;H1=Og

� �
½l̄ðtÞ; L̄ðtÞ; l̄f ðtÞ; L̄F ðtÞ; ḡðtÞ þ g0�dt, (36)

where g0 2 ½0; 2pÞ is the initial value of the canonical variable g, and { } is the Poisson bracket in canonical
variables l, L, lf and Lf, i.e.,

TG;
H1

Og

� �
¼

1

Og

fTG;H1g � fTG;Ogg
H1

O2
g

; Og ¼
dg

dt


N¼0

¼
qTG

qG
,

fTG;H1g ¼
qTG

ql

qH1

qL
�

qTG

qL

qH1

ql

� �
þ

qTG

qlf

qH1

qLF

�
qTG

qLF

qH1

qlf

� �
,

fTG;Ogg ¼
qTG

ql

qOg

qL
�

qTG

qL

qOg

ql

� �
þ

qTG

qlf

qOg

qLF

�
qTG

qLF

qOg

qlf

� �
� �

dOg

dt
, (37)

where the second of Eqs. (37) is derived from the fifth of Eqs. (11). Partial derivatives qTG/qL,y,qOg/qlf
in Eqs. (37) are associated with heteroclinic orbits ŌkðtÞ and P̄kðtÞ of the torque-free ZR liquid-filled solid in
Eq. (22) with six integral constants E, Gp, P, Ōz, H and h. Similarly, heteroclinic orbits in terms of l̄ðtÞ, L̄ðtÞ,
l̄f ðtÞ, L̄f ðtÞ, and ḡðtÞ correspond to heteroclinic orbits in terms of ŌkðtÞ and P̄kðtÞ through transformations (6).
Using the latter, one can simplify the computation of the MHM integrals. An explicit evaluation of the MHM
integral is quite restricted by the algebraic complexity of heteroclinic orbits. In order to evaluate the MHM
integral (36), one may set

gðtÞ ¼

Z t

0

OgðtÞdtþ g09ḡðtÞ þ g0; OgðtÞ ¼
ðL2P̄

2
z þ L1P̄z þ L0ÞGp

N2P̄
2
z þN1P̄z þN0

, (38)

where N2 ¼ r2I2cx þ R2J
2
cx þ 2IcxJcxS2, N0 ¼ r0I

2
cx þ R0J

2
cx þ 2IcxJcxS0, L2 ¼ r2Icx þ S2Jcx, L1 ¼ S1Jcx,

L0 ¼ r0Icx þ S0Jcx, and N1 ¼ 2IcxJcxS1. Then, one can transform the MHM integral (36) into the
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following form,

Mðg0Þ ¼

Z þ1
�1

X12
j¼0

Qj tan
j ð0:5g0Þ

, X6
j¼0

Hd j tan
j ð0:5g0Þ

" #28<
:

9=
;dt, (39)

where Qj for j ¼ 0,1,y,12 and Hdj for j ¼ 0,1,y,6 are functions with arguments ḡðtÞ, ŌkðtÞ and P̄kðtÞ and their
lengthy expressions are omitted for brevity. It can be proved that along heteroclinic orbits of the torque-free
symmetrical ZR liquid-filled solid, following limiting processes are always true

qTG

ql


t!�1

¼
qTG

qL


t!�1

¼
qTG

qlf


t!�1

¼
qTG

qLf


t!�1

¼ �
qTG

qLF


t!�1

¼ 0. (40)

Thus, the MHM integral (39) derivable from Eq. (36) associated with Eqs. (37) converges rapidly when
Og(t)6¼0 and 1/Og(t) 6¼0 for tA(�N,+N) where Og(t) is given in Eqs. (38). The existence of a real angle
g0A[0,2,p) making the MHM integral (39) have simple zero, i. e., M(g0) ¼ 0, implies transversal intersections
between the stable and unstable manifolds in rotational motions of the ZR liquid-filled solid disturbed due to
the effect of the orbital frequency N. Coefficients Qi for i ¼ 0, 1, 2, 3, 4 in Eq. (39) are functions of arguments

E, Gp, P, Ōz, H, h, Mf, Ick, and Jck. The real zero g0 of the MHM integral (39) contains much information for
determining physical parameters which will trigger the possible onset of chaotic rotational motions of the ZR
liquid-filled solid disturbed by small moments due to the orbital frequency. The MHM integral (39) is
associated with heteroclinic orbits (22) of the torque-free symmetrical ZR liquid-filled solid established in
Section 4. It is remarked that when there is no essential singularity in the integrand of the MHM integral,
the MHM technique can effectively be used to measure the ‘‘distance’’ between the stable and unstable
manifolds of the Hamiltonian system subjected to small perturbations. Otherwise, the MHM integral will fail.
From the analysis in Section 8.1, Fig. 4 is drawn from the MHM integral (39) using the bisection method to
compute real zeros of the MHM integral, sin(g0), against the scaled initial component of vortex

px ¼ PxðtaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ R2P2

z2

q
. Note that the perturbation H1 for the disturbed system under investigation con-

tains the argument h because of relations in Eqs. (9) and (10). The argument h may be designated for the
determination of initial conditions for the time evolution of state variables dx2, dy2 and dz2.

Chaotic oscillations in the perturbed ZR liquid-filled solid sliding with rolling on the horizontal plane will be
presented in next section.
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7. Chaos in a liquid-filled ellipsoid sliding and rolling on a perfectly smooth plane

Kuang et al. [13] investigated chaotic motions of the ZR liquid-filled solid rolling without sliding on the
perfectly rough plane. Now we consider an ellipsoid with an axisymmetrical ellipsoidal cavity sliding and
rolling on a perfectly smooth horizontal plane. The system is shown in Fig. 5. The cavity is completely filled
with an ideal, incompressible fluid in uniform vortex motion that is fully determined by three variables as
discussed in Section 2. The entire system has a total of six rotational and three translational degrees of
freedom and is called the liquid-filled ellipsoid hereafter. Chaotic dynamics of the liquid-filled ellipsoid either
dissipative or conservative will be discussed as below.

7.1. A liquid-filled ellipsoid with energy dissipation plus periodic perturbations

Let the principal axes at the origin O of the mass center of the entire system be the reference frame Oxyz; the
mass of the entire system be m and the acceleration of gravity be gr; and the inertial reference frame be OXYZ.
Other notations were given in Section 2: Mg ¼ mgr denotes the weight of the system due to gravity; xk the
coordinates of the point of contact P along Oxyz; Rk the resolved parts along Oxyz of the normal reaction and
two friction components at the point of contact P; uk the velocity components of the center of gravity along
Oxyz; and gk the direction-cosines of the outward direction of the normal to the surface at the point of contact
P with respect to Oxyz. The motion of the sliding liquid-filled ellipsoid rolling on the perfectly smooth
horizontal plane is governed fully by Eulerian equations (1) in x, y and z axes, together with

Lx ¼ xyRz � xzRy; ðx; y; zÞ. (41)

The equations of motion of the center of gravity (see Ref. [41]) are

m
dux

dt
¼ mgrgx þ Rx þmðOzuy � OyuzÞ; ðx; y; zÞ. (42)

Helmholtz equations of uniform vortex motion for an ideal, incompressible liquid contained in the
ellipsoidal cavity, in axes x, y and z, are described by Eqs. (2). Since the line spanned by gk remains always
vertical, Poisson’s equations remain as Eqs. (3). Let Vpx, Vpy, and Vpz be the resolved parts of the velocity at
the point of contact P in the positive directions of Oxyz. The component velocities may be determined from
the body-fixed angular rates as

V px ¼ ux � ðxyOz � xzOyÞ; ðx; y; zÞ. (43)
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Since the resultant of Rx, Ry, and Rz is a reaction R normal to the fixed horizontal plane, we have

Rx ¼ �Rgx; Ry ¼ �Rgy; Rz ¼ �Rgz, (44)

where the negative sign is due to the fact that gx, gy and gz are the direction-cosines of the outward direction of
the normal. It is required that the velocity of the point of contact resolved normal to the perfectly smooth
horizontal plane should be zero:

gxV x þ gyVy þ gzV z ¼ 0. (45)

Eq. (45) is understood as the constraint condition for the liquid-filled ellipsoid rolling and slipping on a
perfectly smooth horizontal plane. Let the equation of the bounding surface be F ðxx; xy; xzÞ9ðxx þ mxÞ

2=
a2

x þ ðxy þ myÞ
2a2

y þ ðxz þ mzÞ
2=a2

z ¼ 1, where ak are semi-diameters of the ellipsoid and mk are the offsets of the
center of the gravity O from the geometric center Ge. The point of contact is where the normal to the liquid-
filled ellipsoid is parallel to the unit vector along the vertical axis. Taking advantage of the fact that the normal
to the surface of the liquid-filled ellipsoid is parallel to grad(F), the gradient of F(xx,xy,xz), one can write (see
Ref. [42]),

xx ¼ gxa2
x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgxaxÞ

2
þ ðgyayÞ

2
þ ðgzazÞ

2
q

� mx; ðx; y; zÞ, (46)

which are the desired relationships governing the coordinates of the point of contact P between the liquid-
filled ellipsoid and the horizontal plane. Assume that the offset of the center of the gravity O from Ge is a small
amplitude e and the shape of the liquid-filled ellipsoid is slightly deviated from the sphere measured by a small
amplitude e. These assumptions may be expressed as

ak ¼ aþ �Ak; mk ¼ �Bk, (47)

where Ak, Bk for k ¼ x,y,z are known constants. Expanding the coordinates of the contact point in terms of e
and substituting Eqs. (47) into Eqs. (46), one obtains when 0o�51,

xk ¼ agk þ �f ek þOð�2Þ, (48)

where f ek ¼ 2gkAk � ðAxg2x þ Ayg2y þ Azg2zÞgk � Bk. Eqs. (48) are used to replace Eqs. (46) for the desired
approximation of Eulerian equations in terms of ok and gk. Further assume that Ick are then perturbed to
Ick+eIck1, where Ick1 are constants because of Eqs. (47), when ignoring the induced inertial products.
Eliminating the unknown variables Rx, Ry, and Rz, in Eqs. (41) associated with Eqs. (44), and in Eqs. (42)
associated with Eqs. (3), (45)–(47), one obtains the approximate Eulerian equations of the liquid-filled
ellipsoid to the first order of e as follows:

Icx
dOx

dt
þ Jcx

dPx

dt
þ ðIczOz þ JczPzÞOy � ðIcyOy þ JcyPyÞOz ¼ �Mx þOð�2Þ; ðx; y; zÞ, (49)

where after ignoring the terms with dPk/dt in the functions Mk, respectively, we have

Mx ¼ ðJczPzOy � JcyPyOzÞIcx1=Icx þ ½�Icx1ðIcy � IczÞ þ IcxðIcy1 � Icz1Þ�OyOz=Icx

þmgr½2gzgyðAz � AyÞ þ Bygz � Bzgy�; ðx; y; zÞ. ð50Þ

One observes that functions Mk for k ¼ x,y,z are linear in terms of Ak and Bk. As aforementioned, there are
five first integrals when e ¼ 0: firstly, the energy integral; secondly, the generalized Jellett’s integral in the case
of the symmetry Icx ¼ Icy, Icx ¼ Jcy and ak ¼ a; thirdly, the integral of constant vorticity; and fourthly, the
integral Oz ¼ Ōz ¼ constant due to the assumption of symmetry. One may deduce that the generalized Jellett’s
integral holds for the symmetrical liquid-filled ball, no matter whether there is a sliding friction between the
spherical base and the horizontal plane. The generalized Jellett’s integral may be found in Ref. [37]. When
ez ¼ 0, the generalized Jellett’s integral states that the scalar product of the angular momentum vector of the
liquid-filled ellipsoid for the mass center O and the radius vector of the contact point is a constant. The first
integrals of the liquid-filled ellipsoid rolling without sliding when e ¼ 0 play a key role in the formulation of
periodic solutions and homoclinic/heteroclinic orbits of the undisturbed system. It can be inferred that
equations of motions of the liquid-filled ball rolling on the horizontal plane possess the same structures as



ARTICLE IN PRESS

CASE - 1

CASE - 3

CASE - 2

1

0.5

0

-0.5
-1 0 1

πx

s
in

(Ω
e
x
t 0

)

Fig. 6. The zeros of MHM integral, sin ðOext0Þ versus px for the periodically perturbed liquid-filled ellipsoid sliding and rolling with energy

dissipation.

A.Y.T. Leung, J.L. Kuang / Journal of Sound and Vibration 302 (2007) 540–563 555
those of the ZR liquid-filled solid rotating about a fixed point, such as Eqs. (1)–(3). Therefore, investigations
performed in Sections 2–5 are valid for the case of the liquid-filled ellipsoid rolling and sliding. It is remarked
that equations of rotational and translational motions of the slipping liquid-filled ball are uncoupled under the
first order approximation in e. Therefore, the derived dynamical equations consisting of the first order
perturbed Eulerian equations (49), Helmholtz equations (2) and Poisson’s equations (3), can be transformed
into the disturbed Hamiltonian equations (11) together with Eqs. (12)–(18). Strategies to establish
relationships among its physical parameters by utilizing the MHM integrals to investigate chaotic motions
have been highlighted Section 5 in the case of energy dissipation. Specifically, conjecture that the ZR liquid-
filled solid is at all time subjected to the action of a dissipative couple Tfk ¼ �eskOk, where sk are positive
constants representing air resistance (see Ref. [42]). Besides, we consider that the acceleration of gravity is
varying periodically in time such as, gr ¼ ge þ Ce sin ðOextÞ, where ge represents the average level of the
acceleration of gravity; Ce is the amplitude of periodical part of gr; and Oex is the external forcing frequency.
The periodically varying acceleration of gravity may arise due to a vertical motion/shaking of the horizontal
plane. Heteroclinic orbits of the undisturbed liquid-filled ellipsoid rolling and sliding on the perfectly smooth
horizontal plane are identical to Eqs. (22). Thus, the MHM integral for the disturbed liquid-filled ellipsoid
with energy dissipation plus periodic excitations is the same in form as Eq. (30) in which

L̄x ¼ mCe½2ḡzḡyðAz � AyÞ þ Byḡz � Bzḡy�,

Ūx ¼ ðJczP̄zŌy � JcyP̄yŌzÞIcx1=Icx

þ ½�Icx1ðIcy � IczÞ þ IcxðIcy1 � Icz1Þ�ŌyŌz=Icx þ L̄xge=Ce; ðx; y; zÞ. ð51Þ

The corresponding zeros of the MHM integral characterizing the possible transversal intersections between
the stable and unstable manifolds of the disturbed liquid-filled ellipsoid with energy dissipation plus periodic
excitations are determined by Eq. (31) associated with Eqs. (51). Given appropriate physical parameters in
Section 8.2.2, we may depict the real zeros of the MHM integral against the scaled initial component of vortex

px ¼ PxðtaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ R2P2

z2

q
of the disturbed liquid-filled ellipsoid as shown in Fig. 6.
7.2. A liquid-filled ellipsoid with energy conservation

We shall investigate the possible onset of chaotic dynamics of the perturbed liquid-filled ellipsoid with
energy conservation. Multiplying Eqs. (2) by Px, Py, Pz respectively, Eqs. (3) by mgrxx, mgrxy, mgrxz
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respectively, Eqs. (49) by Ox, Oy, Oz respectively, and summing the results, one obtains the approximated
Hamiltonian for the perturbed slipping liquid-filled ellipsoid in rotation as Ha ¼ 0:5

P
k¼x;y;z

I ckO2
k þ JckP2

k þmgrgkxk


 �
. We again assume that Ick are perturbed to Ick+eIck1, for constants Ick1 when

ignoring the induced products of moments of inertia. By invoking Eqs. (48), the Hamiltonian corresponding to
Eqs. (2), (3) and (49) may be approximately transformed into the form,

Ha ¼ TG þ �H1 þOð�2Þ,

TG ¼
1

2

X
k¼x;y;z

ðIwkO2
k þ I fky

2
k þ 2IgkOkykÞ þmgra,

H1 ¼
X

k¼x;y;z

1

2
Ick1O2

k þmgrðAkg2k � BkgkÞ

� �
, (52)

where Ok, yk and gk are functions of canonical variables in G, defined in Eqs. (12) and (8), respectively. The
principal term TG corresponds to the torque-free rotational motion of the slipping liquid-filled ellipsoid. The
perturbation amplitude term H1 reflects the contribution of gravitational forces mgr and the slight shape
changes of the disturbed slipping liquid-filled ellipsoid rolling on the perfectly smooth horizontal plane. The
equations of rotational motions uncoupled from the ones of translational motions of the slipping liquid-filled
ellipsoid may be transformed into the disturbed Hamiltonian equations using appropriate canonical variables
in G as discussed in Section 3. The Hamiltonian TG describes a Hamiltonian system in Eqs. (34) whose
heteroclinic orbits are the torque-free rotation of the ZR liquid-filled solid rotating about the center of mass
‘‘fixed’’ in space as written in Eqs. (22). The perturbed Hamiltonian is independent of the variable h as
described in Eqs. (52). Therefore the conjugate momentum H is a constant of motion when ignoring the
influence of terms higher than O(e2). The approximate Hamiltonian (52) can be used to establish the MHM
integral to probe the potential occurrences of chaotic motion. For the torque-free rotation of the slipping
liquid-filled ellipsoid rolling on the perfectly smooth plane, there are two hyperbolic points which are
connected by heteroclinic orbits (22). Under appropriate perturbations in the translation and in the shape of
the bounding volume, the highly degenerate structure is expected to break and perhaps to yield transversality
of heteroclinic orbits. The existence of transverse homoclinic/heteroclinic orbits implies the existence of
‘‘horseshoes’’ and occurrences of chaos. Following Holmes and Marsden [22], we want to prove that the
MHM integral (36) together with Eqs. (37), (38) and (40) has simple zeros implying Smale’s horseshoes. In
order to find the perturbation H1 and its derivatives with respect to l, L, lf and Lf in terms of g0, we substitute
Eqs. (8) and Eqs. (12) into Eqs. (52) to get

H1 ¼
X4
j¼0

Kjtan
j ð0:5g0Þ

1þ tan2 ð0:5g0Þ

 �2 , (53)

where Kj ¼ KjðŌx; . . . ; P̄z; ḡÞ are functions of ḡðtÞ, ŌkðtÞ and P̄kðtÞand omitted here for brevity due to their
complexity. From Eq. (53) one obtains

qH1

ql
¼
X4
j¼0

qKj

ql

tanj ð0:5g0Þ

1þ tan2 ð0:5g0Þ

 �2 ; qH1

qL
¼
X4
j¼0

qKj

qL

tanj ð0:5g0Þ

1þ tan2 ð0:5g0Þ

 �2 . (54)

The derivatives qKj/ql and qKj/qL for j ¼ 0,1,2,3,4 are also complicated functions of ḡðtÞ, ŌkðtÞ and P̄kðtÞ

and omitted here for brevity. Substituting Eqs. (53) and (54) into Eq. (36), the MHM integral takes the final
form,

Mðg0Þ ¼
X4
j¼0

Pjtan
j ð0:5g0Þ=½1þ tan2 ð0:5g0Þ�

2, (55)
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where

Pj ¼

Z þ1
�1

TG;
Kj

O

� �
ðl̄ðtÞ; L̄ðtÞ; ḡðtÞÞdt

for j ¼ 0,1,2,3,4. Remarkably, the limiting properties given in Eqs. (40) ensure that coefficients Pj in Eq. (55)
converge quickly towards normal limits. The real zeros of the MHM integral (55) will provide necessary

conditions for possible chaotic motion. Given Ick, Ick1, Jck, Ak, Bk, a and constants Gp, E, P, Ōz, and H, the
real roots of the 4th order polynomial M(g0) ¼ 0 with respect to sin(g0) or tan(g0) can be obtained. Gp, E, P,

Ōz, and H are evaluated from the first integrals of the undisturbed liquid-filled ellipsoid slipping and rolling on
the perfectly smooth plane. According to the parameters given in Section 8.2.1, the real zeros of the MHM

integral (55) in terms of sin(g0), against the scaled initial component of vortex px ¼ PxðtaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ R2P2

z2

q
are

computed and depicted in Fig. 7 where the first integral H ¼
P

k¼x;y;z½ðIckOkp þ JckPkÞgkp�. It is remarked that

the MHM integral (55) is a local criterion for the existence of transversal intersections between the stable and
unstable manifolds and hence for the possible chaotic motion of the slipping liquid-filled ellipsoid rolling on
the perfectly smooth plane when energy is conserved.

8. Numerical simulations

The above theoretical analyses using MHM integrals demonstrated that rotational motions of the ZR
liquid-filled solids, either conservative or dissipative, are chaotically sensitive to initial conditions. Numerical
examples are presented below.

8.1. Chaotic rotations of the ZR liquid-filled solid in circular orbit

8.1.1. The conservative case

When numerically integrating the MMH integral (36), one will encounter potential singularities in the
denominator and numerator of the function Og(t) in Eqs. (38). The vanishing of the denominator of Og(t) leads
to IwkŌk þ Igkȳk ¼ 0 for k ¼ x,y whose physical meaning is that the vector of the instantaneous angular
momentum coincides with the body-fixed z-axis at certain time tfA(�N,+N). Fortunately, no such
singularities are detected for the selected examples.
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Heteroclinic orbits of the symmetrical ZR liquid-filled solid have been established in Section 4.2. Consider
the following three Cases when the torque-free symmetrical ZR liquid-filled solid has heteroclinic orbits,

Case 1:

E ¼ 52:0992; Gp ¼ 7:9427; P ¼ 0:7842; Ōz ¼ 0:4254,

Pz1 ¼ 5:0; Pz2 ¼ �0:5963; Pz3 ¼ �0:5963; Pz4 ¼ �7:0;

Case 2:

E ¼ 63:1278; Gp ¼ 9:0726; P ¼ 0:8595; Ōz ¼ 0:6381,

Pz1 ¼ 5:0; Pz2 ¼ �0:8945; Pz3 ¼ �0:8945; Pz4 ¼ �8:0;

Case 3:

E ¼ 90:044; Gp ¼ 11:602; P ¼ 1:0173; Ōz ¼ 1:0634,

Pz1 ¼ 5; Pz2 ¼ �1:4908; Pz3 ¼ �1:4908; Pz4 ¼ �10. ð56Þ

Take the Case 3 as an example to explain algorithms established in Section 4. Given the two real roots of the
polynomial equation

a4P4
z þ a3P3

z þ a2P2
z þ a1Pz þ a0 ¼ 0, (57)

to be Pz1 ¼ 5 and Pz4 ¼ �10, one obtains all 10 roots of the 10th degree polynomial Eq. (26) to be 0(double),
2.5(double), 2.57i13.601 (double), 10.3122, and �1.4908, where i2 ¼ 1. Choose �4.4908 as the double root
Pz2 ¼ Pz3 ¼ �1.4908 of Eq. (57), satisfying constraints Pz14Pz2 ¼ Pz34Pz4 in generating heteroclinic
orbits of the torque-free symmetrical ZR liquid-filled solid. Then, from algorithms of Kuang et al. [12], one

gets Ōz ¼ 1:0634 rad=s, Gp ¼ 11.6017Nms, P ¼ 1.0173 rad/s, and E ¼ 90.0435Nm. Hence, we can compute
heteroclinic orbits of the torque-free ZR liquid-filled solid using Eqs. (22) for the Case 3 when two integral

constants P̄yðtaÞ and P̄xðtaÞ are appropriately designated. It can be shown that limt!�1ŌkðtÞ ¼ Okp and

limt!�1P̄kðtÞ ¼ Pkp as expected. The integral constant H ¼
P

k¼x;y;z½ðIckŌkp þ JckP̄kÞḡkp� along heteroclinic

orbits is used for the computation of the MHM integral. For the ZR liquid-filled solid with bx, by, bz, and Ick

given above together with other integral constants, the real roots of the MHM integral (39) in terms of sing0

against the scaled initial component of vortex px ¼ PxðtaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ R2P2

z2

q
are depicted in Fig. 4 using the

bisection method. As there are real roots in the MHM integral, there exist transversal intersections between
the stable and unstable manifolds of rotational motions of the ZR liquid-filled solid disturbed by small
moments arisen from the orbital frequency. Hence, rotational motions for the appropriate selection of N

together with initial conditions are chaotic in the sense of Smale’s horseshoes. Except for heteroclinic orbits,
one may acquire periodic orbits of the torque-free ZR liquid-filled solid using the Jacobian elliptic integral (see
Ref. [12]). When given six integral constants, we may numerically solve periodic solutions of the torque-free
ZR liquid-filled solid with ease but heteroclinic orbits with difficulty. That is why we re-highlighted the
algorithms for the solution of heteroclinic orbits in Section 4. Although the computing algorithms in Section 4
are useful, we fail in zoning precisely the parametric regions for periodic solutions from those for heteroclinic
orbits. Except for the three cases studied, other discrete sets of four integral constants producing heteroclinic
orbits of the torque-free symmetrical ZR liquid-filled solid may be determined similarly in Fig. 2.

In order to study random-like behaviors (see Ref. [43]) exhibited by Eqs. (1)–(3) for the orbiting ZR liquid-
filled solid, one can at first select some physical parameters as given below. The distance of the mass center of
the ZR liquid-filled solid from the Earth center is de ¼ 7178.137 km. The gravitational attraction constant of
the Earth is m ¼ 3.986� 1014Nm2/kg. The theoretical results are numerically crosschecked using Poincare
sections in Fig. 8 by the 4th Runge–Kutta algorithms. Initial conditions are selected from one of two
hyperbolic fixed points computed. Take the Case 3 as an example, we designate

Oxp ¼ 0:3838; Oyp ¼ �1:5724; Ozp ¼ 1:0634,

Pxp ¼ 7:9704; Pyp ¼ �32:6559; Pzp ¼ �1:4908, ð58Þ
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together with directional cosines being initiated from gkp ¼ ðIckOkp þ JckPkpÞ=Gp. In addition, initial
conditions of dx2, dy2 and dz2 can be associated with the above-mentioned initial conditions and the given
value h ¼ 0.15p. Because Poincare maps of periodic orbits of the dynamical system are closed curves, one
deduces from Fig. 8 that the orbits of long-term behaviors of the disturbed ZR liquid-filled solid arising
from the orbital frequency are bounded and non-periodic. Other combinations for directional cosines can be
drawn similarly. In order to show the long-term chaotic characteristic properties, twelve Lyapunov exponents
for the disturbed ZR liquid-filled solid orbitor are evaluated from standard algorithms based on Gram-
Schmidt reorthonormalization procedures (see Ref. [44]) as follows: 1.070438, 0.037519, 0.003842, �0.006816,
�0.006058, �0.007581, �0.001091, �0.000337, �0.00883, �0.005395, �0.026089 and �1.057547. One may
check that the sum of Lyapunov exponents of the conservative system (1)–(3) together with Eqs. (9) is
approximately vanishing and the largest Lyapunov exponent is positive, i.e., 1.070438. The calculated
Lyapunov exponents show that numerical results conform with the prediction of the MHM integral (39) in the
case of the disturbed ZR liquid-filled solid due to the orbital frequency.

8.1.2. The dissipative case

When the ZR liquid-filled solid is subjected to damped and periodically perturbing torques in time described
in Eqs. (27), the corresponding MHM integral (29) or (30) has been discussed in Section 5. As mentioned in
the last section, the physical parameters and integral constants in association with heteroclinic orbits must be
identified beforehand according to the established algorithms in Section 4.2. Further, designate damping
coefficients as

sk ¼ 0:3534 ðthe first situÞ; sk ¼ 0:09865 ðthe second situÞ;

sk ¼ 0:1434 ðthe third situÞ: for k ¼ x; y; z;
(59)

and amplitudes of the external forcing terms in Eqs. (27) as

Lx ¼ 3:5638; Ly ¼ 5:7854; Lz ¼ 4:7896. (60)

The real zeros of the MHM integral, sin(Oext0), against the scaled initial component of vortex px ¼

PxðtaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ R2P2

z2

q
are depicted from Eqs. (30) and (31) in Fig. 3 for three different situations in Eqs. (59)

together with Eqs. (60) and when Oex ¼ 4. The existence of real zeros of the MHM integral implies the possible
existence of chaotic motions of the ZR liquid-filled solid disturbed by damped and time-periodical excitations,
when the dimensionless ‘‘small’’ parameter e is appropriately selected. In practical computations, e may be a
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big value. The MHM integral does not depend on the smallness of e but chaotic dynamics of the original system
(i.e., the ZR liquid-filled solid under the action of damped and time-periodically perturbed moments) do.
Taking initial conditions (58), chaotic dynamics of damped and time-periodically perturbed ZR liquid-filled
solid are depicted using Poincare sections in Fig. 9 where Oex ¼ 4 and e ¼ 0.01. Nine Lyapunov exponents
corresponding to Fig. 9 may be calculated as 0.103485, 0.016834, 0.005638, �0.004618, �0.005917, �0.006571,
�0.007956, �0.008702, and �0.092307. In order to use the standard Gram–Schmidt reorthonormalization
procedures, one should transform the non-autonomous system into an appropriate autonomous form. The
largest Lyapunov exponent is positive, i.e., 0.103485 implying that simulated dynamics is chaotic. The sum of
nine Lyapunov exponents is negative, i.e., �1.14322� 10�4, which shows that the dynamical system of the
damped and time-periodically perturbed ZR liquid-filled solid is dissipative.

8.2. Chaotic oscillations of the liquid-filled ellipsoid

8.2.1. Energy conserving case

Consider the chaotic motion of the sliding liquid-filled ellipsoid rolling on the perfectly smooth plane.
Designate physical parameters of the liquid-filled ellipsoid as in Section 4.2. In addition, perturbation
parameters are given as: Icx1 ¼ 0.5, Icy1 ¼ 0.9, Icz1 ¼ 0.75, Ax ¼ 45, Ay ¼ 80, Az ¼ 76, Bx ¼ 50, By ¼ 39, and
Bz ¼ 125.6. We focus on the real zeros of the MHM integral (55) for three Cases in Eqs. (56). The
corresponding real zeros of the MHM integral (55) in terms of sin(g0) against the scaled initial component

of vortex px ¼ PxðtaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ R2P2

z2

q
are graphed in Fig. 7. For simulated cases, sin(g0) does not vary with

respect to the argument h, an integral constant of the torque-free liquid-filled ellipsoid. The existence of real
zeros of the MHM integral (55) ensures that the disturbed motions with energy conservation can be chaotic
depending on the value of e and initial conditions. Taking e ¼ 0.001 and initial conditions (58), long-term
dynamics may be simulated and depicted using Poincare sections in Fig. 10. Lyapunov exponents conforming
with Fig. 10 are evaluated below: 17.255575, 4.536381, 0.394175, 0.065544, 0.013406, �0.006513, �0.0019738,
�5.053901 and �17.184933. The sum of all Lyapunov exponents is approximately zero as expected. As the
largest Lyapunov exponent is positive, the motion is chaotic in the sense of Smale’s horseshoes.

8.2.2. Energy dissipating case

Designate the damping coefficient s ¼ 0.01, the amplitude of the gravity Ce ¼ 8, the external excitation
frequency Oex ¼ 4, the average level ge ¼ 9.8 and the small parameter e ¼ 0.001. Using the MHM integral (29)
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associated with Eqs. (51), we may draw the real zeros of the MHM integral (29), sin(Oext0), against the scaled

initial component of vortex px ¼ PxðtaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ R2P2

z2

q
in Fig. 6 for Case 1–3 in Eqs. (56). The existence of the

real zeros of the MHM integral means that there are many sets of physical parameters which may lead to
chaotic motions under appropriate dissipative and periodic moments. Taking e ¼ 0.001 and initial conditions
(58), we may depict chaotic motions using Poincare sections in Fig. 11. Other combinations can be drawn
similarly. Lyapunov exponents conforming with Fig. 11 are computed as 7.204723, 0.761418, 0.015400,
�0.001417, �0.002344, �0.004755, �0.004719, �0.777833 and �7.198459. Since the largest Lyapunov
exponent is positive, conforming to the characteristic of chaotic dynamics, we may deduce that MHM
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integrals help us a lot in determining the set of physical parameters which will potentially lead to chaos in the
sense of Smale’s horseshoes.

9. Conclusions

In the computation of MHM integrals we encounter three types of potential singularities in the integrands
of MHM integrals for the determination of the transversal intersections between the stable and unstable
manifolds of the disturbed ZR liquid-filled solids either conservative or dissipative as discussed in Ref. [11].

The key contribution of this paper is the formulation of the MHM criteria that can be used for judging the
potential occurrences of chaotic rotational motions of the ZR liquid-filled solids in the case of the orbiting ZR
liquid-filled solid and the sliding liquid-filled ellipsoid rolling on the perfectly smooth horizontal plane either
conservative or dissipative. The author’s previous investigations were carried out for the ZR liquid-filled solid
in circular orbit under the action of gravity-gradient torques of order O(N2). Present disturbances due to the
orbital frequency are of order O(N). The degenerate structures of heteroclinic orbits of the torque-free ZR
liquid-filled solid will break perhaps to yield transverse heteroclinic orbits due to disturbance toques of order
O(N). The existence of real zeros in MHM integrals due to Holmes and Marsden [22,25] generically means
that there is no first integral for rotational motions of the ZR liquid-filled solid under certain disturbing
torques. The significance of the investigation in the paper is that, based upon 1) the disturbed Hamiltonian
equations in terms of generalized Deprit’s canonical variables, 2) homoclinic/heteroclinic orbits and 3) MHM
integrals, effective algorithms for predicting physical parameters corresponding to the potential chaotic
rotations of the ZR liquid-filled solid under the action of small moments are formulated. Theoretical
conclusions predicted from MHM integrals agree well with the extracted information from Poincare sections
and Lyapunov exponents of the disturbed ZR liquid-filled solids, either conservative or dissipative. The
dynamics of the disturbed liquid-filled ellipsoid rolling and sliding on the perfectly smooth plane are found to
be chaotic theoretically and their complexities are detected theoretically.
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